logo inner

Research Engineer, CLIO

AnthropicOnsite

About Anthropic


Anthropic’s mission is to create reliable, interpretable, and steerable AI systems. We want AI to be safe and beneficial for our users and for society as a whole. Our team is a quickly growing group of committed researchers, engineers, policy experts, and business leaders working together to build beneficial AI systems.

About the role


We are seeking an experienced Machine Learning Systems Engineer to join our Encodings and Tokenization team at Anthropic. This cross-functional role will be instrumental in developing and optimizing the encodings and tokenization systems used throughout our Finetuning workflows. As a bridge between our Pretraining and Finetuning teams, you'll build critical infrastructure that directly impacts how our models learn from and interpret data. Your work will be foundational to Anthropic's research progress, enabling more efficient and effective training of our AI systems while ensuring they remain reliable, interpretable, and steerable.

Responsibilities:


  • Design, develop, and maintain tokenization systems used across Pretraining and Finetuning workflows
  • Optimize encoding techniques to improve model training efficiency and performance
  • Collaborate closely with research teams to understand their evolving needs around data representation
  • Build infrastructure that enables researchers to experiment with novel tokenization approaches
  • Implement systems for monitoring and debugging tokenization-related issues in the model training pipeline
  • Create robust testing frameworks to validate tokenization systems across diverse languages and data types
  • Identify and address bottlenecks in data processing pipelines related to tokenization
  • Document systems thoroughly and communicate technical decisions clearly to stakeholders across teams

You may be a good fit if you:


  • Have 8+ years of software engineering experience
  • Have significant software engineering experience with demonstrated machine learning expertise
  • Are comfortable navigating ambiguity and developing solutions in rapidly evolving research environments
  • Can work independently while maintaining strong collaboration with cross-functional teams
  • Are results-oriented, with a bias towards flexibility and impact
  • Have experience with machine learning systems, data pipelines, or ML infrastructure
  • Are proficient in Python and familiar with modern ML development practices
  • Have strong analytical skills and can evaluate the impact of engineering changes on research outcomes
  • Pick up slack, even if it goes outside your job description
  • Enjoy pair programming (we love to pair!)
  • Care about the societal impacts of your work and are committed to developing AI responsibly

Strong candidates may also have experience with:


  • Working with machine learning data processing pipelines
  • Building or optimizing data encodings for ML applications
  • Implementing or working with BPE, WordPiece, or other tokenization algorithms
  • Performance optimization of ML data processing systems
  • Multi-language tokenization challenges and solutions
  • Research environments where engineering directly enables scientific progress
  • Distributed systems and parallel computing for ML workflows
  • Large language models or other transformer-based architectures (not required)

Deadline to apply:

None. Applications will be reviewed on a rolling basis.
The expected salary range for this position is:Annual Salary:$320,000 - $405,000USD

Logistics


Education requirements:

We require at least a Bachelor's degree in a related field or equivalent experience.
Location-based hybrid policy: Currently, we expect all staff to be in one of our offices at least 25% of the time. However, some roles may require more time in our offices.

Visa sponsorship:

 We do sponsor visas! However, we aren't able to successfully sponsor visas for every role and every candidate. But if we make you an offer, we will make every reasonable effort to get you a visa, and we retain an immigration lawyer to help with this.

We encourage you to apply even if you do not believe you meet every single qualification.

Not all strong candidates will meet every single qualification as listed.  Research shows that people who identify as being from underrepresented groups are more prone to experiencing imposter syndrome and doubting the strength of their candidacy, so we urge you not to exclude yourself prematurely and to submit an application if you're interested in this work. We think AI systems like the ones we're building have enormous social and ethical implications. We think this makes representation even more important, and we strive to include a range of diverse perspectives on our team.

How we're different


We believe that the highest-impact AI research will be big science. At Anthropic we work as a single cohesive team on just a few large-scale research efforts. And we value impact — advancing our long-term goals of steerable, trustworthy AI — rather than work on smaller and more specific puzzles. We view AI research as an empirical science, which has as much in common with physics and biology as with traditional efforts in computer science. We're an extremely collaborative group, and we host frequent research discussions to ensure that we are pursuing the highest-impact work at any given time.

As such, we greatly value communication skills.The easiest way to understand our research directions is to read our recent research. This research continues many of the directions our team worked on prior to Anthropic, including: GPT-3, Circuit-Based Interpretability, Multimodal Neurons, Scaling Laws, AI & Compute, Concrete Problems in AI Safety, and Learning from Human Preferences.

Come work with us!


Anthropic is a public benefit corporation headquartered in San Francisco. We offer competitive compensation and benefits, optional equity donation matching, generous vacation and parental leave, flexible working hours, and a lovely office space in which to collaborate with colleagues. Guidance on Candidates' AI Usage: Learn about our policy for using AI in our application process

Life at Anthropic

Anthropic PBC is a U.S.-based artificial intelligence (AI) startup company, founded in 2021, researching artificial intelligence as a public-benefit company to develop AI systems to “study their safety properties at the technological frontier” and use this research to deploy safe, reliable models for the public. Anthropic has developed a family of large language models (LLMs) named Claude as a competitor to OpenAI’s ChatGPT and Google’s Gemini.
Thrive Here & What We Value1. Mission-driven organization focused on creating safe and beneficial AI systems2. Collaborative team working towards long-term goals of steerable, trustworthy AI3. Emphasis on impact rather than smaller puzzles4. View AI research as an empirical science with physics and biology parallels5. Values communication skills and frequent research discussions to ensure highest-impact work6. Believes in big science approach to AI research7. Collaborative group that values impact over smaller puzzles8. Emphasizes collaboration and alignment across internal teams9. Commitment to creating reliable, interpretable, and steerable AI systems10. Values representation and diverse perspectives on the team.</s>

Related Sub

This job belongs to these sub. Explore related roles here:
Machine learning jobs
Your tracker settings

We use cookies and similar methods to recognize visitors and remember their preferences. We also use them to measure ad campaign effectiveness, target ads and analyze site traffic. To learn more about these methods, including how to disable them, view our Cookie Policy or Privacy Policy.

By tapping `Accept`, you consent to the use of these methods by us and third parties. You can always change your tracker preferences by visiting our Cookie Policy.

logo innerThatStartupJob
Discover the best startup and their job positions, all in one place.
Copyright © 2025